
NCCS Brown
Bag Series

TotalView on Discover:
Part 2

ReplayEngine and MemoryScape

Chongxun (Doris) Pan
doris.pan@nasa.gov

June 14, 2012

Agenda For Part 1 (see previous tutorial)

•  Overview
•  Basic Navigation and Control
•  Demo 1: Basic Navigation and Control

!  Using an OpenMP Space weather application

•  Debugging MPI Applications
•  Demo 2: MPI Debugging:

!  Using GEOS5-AGCM

3

Agenda For Part 2

•  Overview
•  Reverse Debugging with ReplayEngine
•  Demo 1: Replay Engine

!  Using an OpenMP Space weather application

•  Memory Debugging with MemoryScape
•  Demo 2: MemoryScape

!  Using GEOS AGCM

4

What is ReplayEngine ?

•  Reverse Debugging
!  Let you step backward by function, line, or instruction
!  Capture and deterministically replay executions

•  Major features
!  No recompilation
!  Designed to be used for parallel applications

•  Why use ReplayEngine?
!  Eliminate restart cycle and hard-to-reproduce bugs

5

ReplayEngine

•  Record Mode (saving execution history)
!  Capture the order of executions and changes to the data

•  Replay Mode (when using a ReplayEngine command)
!  Like a “rewind” button on a DVR

•  Implications
!  To ensure deterministic execution trajectory, it forces single

thread execution at a time
!  During Replay mode, some operations (i.e., setting variables or

full asynchronous thread control) are not available
!  Record mode could incur significant overhead (both in

execution time and memory usage)

6

Enable ReplayEngine

7

1. Starting Totalview with
ReplayEngine enabled

2. After launching totalview, click the
“Enable ReplayEngine” Button.

ReplayEngine will be enabled after
“Restart”

ReplayEngine Usage Models

•  GoBack (vs. Go): back to the last action point or the start of
the recorded history

•  Prev (vs. Next): back to previous statement executed. If the
line has a function call, it skips over the call

•  Unstep (vs. Step): back to previous statement executed. If the
line has a function call, it moves to the last statement in the call

•  Caller (vs. Out): back to before the current routine was
called.

8

ReplayEngine Usage Models (Cont’d)

•  BackTo (vs. Run To): back to the line you select

•  Live: to shift from Replay mode to Record mode. It displays
the statement that would have executed if you had not moved
into Replay mode.

9

ReplayEngine Preferences

10

•  Setting Maximum History size
(default is unlimited)

•  setenv
TVD_REPLAY_TMPDIR to
control the directory of saving the
history information (default is /
tmp)

Demo 1: ReplayEngine

•  Debugging an OpenMP Spaceweather application
with ReplayEngine enabled

•  Toolbar commands
•  Preferences
•  TVD_REPLAY_TMPDIR

11

Agenda For Part 2

•  Overview
•  Reverse Debugging with ReplayEngine
•  Demo 1: Replay Engine

!  Using an OpenMP Space weather application

•  Memory Debugging with MemoryScape
•  Demo 2: MemoryScape

!  Using GEOS AGCM

12

Your Program data

•  Your program data is organized in four segments:
1.  Text (code): machine code instructions
2.  Data section: static and global variables
3.  Stack: local (automatic) variables

!  Memory set aside for each thread of execution. It remains during
program execution.

!  When a function is called, a block is reserved on the top of the stack
for local (automatic) variables. It will go out of scope when the
function returns and automatically deallocate.

!  Accessing stack in LIFO order – the most recently reserved block is
the next block to be freed.

!  Easy to keep track of the stack -- Stack typically maps to the cache,
so it is faster than the heap but smaller and expensive

13

Your Program data -- What is heap?

4.  Heap: all variables created or initialized at runtime are
stored
!  Dynamic memory allocations. Heap size can grow as space is

needed.
!  Variables created on the heap must be destroyed manually and

never fall out of scope.
!  There's no enforced pattern to the allocation and deallocation of

blocks from the heap; you can allocate a block at any time and free
it at any time

!  Slower to allocate on the heap in comparison to variables on the
stack

!  Can have fragmentation when there are a lot of allocations and
deallocations

!  Responsible for memory leaks and many other memory bugs

14

What is MemoryScape?

•  Runtime Memory Analysis to detect memory bugs
!  A memory bug is a mistake in heap memory usage

! Failure to check for error conditions
! Leaking: failure to free memory
! Dangling references: failure to clear pointers
! Memory corruption

!  Writing to memory not allocated
!  Over running array bounds

•  Designed to be used with
parallel applications.

15

Heap block

Heap block

Why are memory bugs hard to find?

•  Memory problems can be hidden
!  For a given scale or platform or problem, they may not be

fatal
!  Failures could occur until modification, reuse of a

component, or moving the application to a different cluster
with a new OS

!  Libraries could be a source of problem
!  Can also manifest as “random crashes” or “random wrong

answers”

16

MemoryScape Features:

•  Stopping execution when heap problems occur
•  Viewing the heap graphically
•  Leak detection and dangling pointer detection
•  Memory Comparisons between processes
•  Memory Corruption detection – Bound errors

!  Guard Blocks - allocated additional memory (8 bytes default)
before or after a heap block. An event notification occurs
when overwriting guard blocks.

!  Red Zone – allocated additional buffer before or after a heap
block. An event notification occurs when either writing or
reading to the Red Zone. (High memory overhead!)

17

Memory Debugger Features: (Cont’d)

•  Block painting
!  Writing a bit pattern into allocated and deallocated blocks
!  Detecting the use of memory either before it is initialized

or after it is deallocated

•  Hoarding
!  Holding onto deallocated memory so it cannot be reused

immediately
!  Not an often-used feature
!  Mostly used to detect problems related to memory being

deallocated by one thread while another thread is using this
memory

18

Start MemoryScape

1.  Make sure your program is compiled with –g
2.  module load tool/tview-8.9.2-2
3.  setenv PATH $PATH:/usr/local/toolworks/

memoryscape.3.2.2-2/bin/
4.  Launch totalview as usual, i.e.,
totalview <executable>
Then click “Enable memory debugging” in the “Startup

Parameters” window
Or just type:
memscape <executable>

19

Strategies for Memory Debugging for Parallel
Applications

•  Run (or step through) the application and see if
memory events are detected

•  View memory usage across the MPI job
!  Compare memory footprints of the processes

•  Gather heap information/Leak reports in all processes
of the MPI job
!  Select and examine individually

! Look at the allocation pattern
! Look for leaks

!  Compare with the “diff” mechanism
! Look for major differences

20

Memory Debugging Options

21

Low is the default;
Medium adds guard blocks;
High adds Red Zone detection;
Extreme adds above all plus paint memory
and hoarding.

Select Medium only when you
need to check for corrupted
memory!
Select High only when you need
to check for memory overruns!

What are memory events?

22

When one of these errors occurs, MemoryScape places event indicators
by the process and at the top of the window

Analysis of memory debugging data

23

•  Heap status
• Graphical report
• Source report
• Backtrace report

•  Leak detection
• Source report
• Backtrace report

•  Memory usage
• Chart report
• High-level table
• Detailed table

•  Memory corruption
reports

• If guard blocks
are chosen

•  Memory comparison
among processes

Heap Status Graphic Report

24

•  Filtering reports is usually
necessary to suppresses
the display of too much
information.

•  Right-click routine name
or line number in Heap
Status Source or Backtrace
report or in a Heap Status
Graphical report, and
choose “Filter out this entry”

Heap Status Source Report

25

Leak Detection Source Reports

26

Leak reports are
essentially the same
as the Heap status
reports, only with fewer
controls and less data.

Leak Detection Backtrace Reports

27

Backtrace Report
contains similar info as
the source report. It is
useful in helping you
coordinate info in
different screens and
tabs as it does not
change from report to
report.

Memory Usage Chart Report

28

Differ slightly from the
Heap Status reports:
•  Memory usage data is
obtained from the OS
perspective, including
overhead of the
MemoryScape itself;

•  Heap status is
obtained
from monitoring
program requests and
releases of memory

Memory Usage detailed report

29

A detailed program/library report table – breakdown for the program and
libraries for each process:

You can also see just a high level process report table – breakdown for each
process.

Memory Comparison Report

30

Memory Corruption Report

31

Memory Corruption Reports are generated only if you select “Medium” or higher
debugging option

Agenda For Part 2

•  Overview
•  Reverse Debugging with ReplayEngine
•  Demo 1: Replay Engine

!  Using an OpenMP Space weather application

•  Memory Debugging with MemoryScape
•  Demo 2: MemoryScape

!  Using GEOS AGCM

32

Demo 2

•  xsub -I -V –l select=1:ncpus=12:mpiprocs=12,walltime=1:00:00 –W
group_list=<your_group>

Once the compute node is available:
•  cd “$GEOS_EXPDIR”
•  source $GEOSBIN/g5_modules
•  re-compile GCM with BOPT=g
•  mpdboot –n 1 –r ssh –f $PBS_NODEFILE
•  module load tool/tview-8.9.2.2
•  cp and link necessary files ..(all in gcm_run.j)
•  totalview ./GEOSgcm.debug.x

33

More info and references…

•  MemoryScape_User_Guide.pdf
•  ReplayEngine_Getting_Started_Guide.pdf
Under /usr/local/toolworks/totalview.8.9.2-2/doc/pdf

•  “Memory Debugging Parallel Programs” tutorial
offered by the Totalview in SC009

http://www.crc.nd.edu/~rich/SC09/docs/tut120/
tut120.pdf

34

